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LETTER TO THE EDITOR 

Bulk, surface and hull fractal dimension of critical Ising 
clusters in d = 2 
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t Limburgs Universitair Centrum, 3610 Diepenbeek, Belgium 
$ Dipartimento di Fisica dell'universita and CISM, 35131 Padova, Italy 

Received 21 February 1989, in final form 23 February 1989 

Abstract. We present accurate numerical calculations of the fractal dimension d and surface 
dimension ds of the critical Ising cluster, in d = 2. Our results clearly support the values 
d = g, ds = 2 which are consistent with k ing  clusters being described by tricritical q = 1 
Potts model exponents. From this, the hull dimension dH of critical Ising clusters is found 
to be (7, = y ,  consistent with numerical work of other authors. 

The study of clusters of sites with, e.g., spin up in the Ising model, originating in the 
droplet picture of critical behaviour (Fisher 1967) has been an active field in the last 
20 years. This interest is mainly caused by the fact that the clusters could give a 
description of critical behaviour in terms of geometrical properties (Binder 1976). 

If a site with spin up (down) is considered as being occupied (unoccupied), the 
problem of Ising clusters can be translated into a problem of (Ising) correlated site 
percolation. In this way, many concepts from percolation, such as cluster numbers, 
percolative free energy, etc, can be used also in the study of Ising clusters. For example 
we can define n, (T, g )  as the (thermal) average number of s clusters (per site) when 
the Ising model is at temperature T and in a magnetic field g. Besides these finite 
clusters, one infinite cluster may also be present in the model. As in the case of ordinary 
percolation, one may then for example look for the fractal properties of this infinite 
cluster. 

Let us first briefly review what is known about the Ising clusters from exact results 
(Coniglio et a1 1977). We will limit ourselves here to the two-dimensional case. For 
K = J /  kT 3 K ,  there exists one infinite cluster of up spins for all h = g /  kT > 0, which 
is a two-dimensional object ( K ,  is the critical value of the two-dimensional Ising model, 
e.g. sinh2 K , =  1 on the square lattice). Such a cluster also exists for all K < K,, 
h > h o ( K )  where the function h o ( K )  is not completely known. For K + 0, ha approaches 
a value determined by the site percolation threshold p ,  (for uncorrelated percolation), 
given by exp( h 0 ( 0 ) ) / 2  cosh ho(0) = p , .  Finally, it was recently shown (Stella and Van- 
derzande 1988) that for K + K , ,  h o ( K )  should behave as 

~ , ( K ) - ( K , - K ) ' ~ ?  (1) 
Precisely at K = K,, h = 0 there exists one infinite cluster of up (down) spins which 

is a fractal. We will refer to this cluster as the incipient infinite Ising cluster ( I ~ C  for 
short). In the present letter we determine the fractal dimension of the r3c. Moreover, 
we study the fractal dimension of critical Ising clusters in a semi-infinite geometry. 
As shown below, on the boundary the cluster fractal dimension, &, is simply related 
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to the percolative magnetic surface exponent y;I of the Ising model. As in other 
problems of two-dimensional critical phenomena, consideration of such surface 
exponents can be an extremely important and sensible check for the appropriate 
classification within conformal invariance schemes. In the case of Ising clusters at 
Onsager’s critical point, such a classification has recently been obtained by the present 
authors. The work presented here leads to a further confirmation and derives some 
new consequences of these results. 

The approach we take combines Monte Carlo calculations in finite systems with a 
finite-size scaling analysis (Barber 1983, Nightingale 1982). This technique was recently 
applied to the case of ordinary percolation (Vanderzande 1988). Let us define a 
percolative free energy for the cluster numbers n s ( K ,  h )  as 

f(K, h, H )  =C n s ( K ,  h )  exp(-sH). (2) 
S 

Here H is a ‘ghost’ field, similar to the one used in ordinary percolation (see e.g. 
Essam 1980). From (2), a percolative susceptibility xp(K, h )  can be defined as (for 
H = O )  

=C s2ns (K ,  h ) .  (3) 

In the neighbourhood of the Ising critical point K = K,, H = h = 0, f obeys a 
scaling law of the form 

f ( K ,  h, H ) -  b-2f(bycK, b’hh, bYHH). (4) 
Let us now consider this problem in a finite geometry, e.g. in a square of L x  L sites. 
Then, the scaling law (4) is modified into 

f ( K ,  h, H, L ) -  b -2 f (by iK ,  bYhh, bYHH, b - ’ L ) .  ( 5 )  
As a consequence, at the Ising critical point the susceptibility xp in a finite system is 
expected to grow as 

,yp( K,., h = 0, L )  - L - 2 + 2 Y ~  ( 6 )  
with the system size. 

As in ordinary percolation (Stanley 19771, yH can be interpreted as the fractal 
dimension of the r3c. To see this, define P(K,  h )  as the probability that a given site 
belongs to the infinite cluster of up spins. The probability that a spin is up is given 
by ;( m( K ,  h )  + 1) where m( K, h )  is the magnetisation of the Ising model. If the spin 
is up it is in the infinite cluster with probability P ( K ,  h ) ,  and in a finite cluster with 
probability 8, sn,( K, h ) ;  thus we have 

(7)  P( K, h ) = ;( m ( K ,  h ) + 1 ) - 1 sn, ( K ,  h ). 
5 

Along the line h =0, m ( K ,  h )  will behave as 
m ( K ,  h )  - ( K  - K,)(2-yh)/yt=1/8 K > K ,  

and from (4) the singular part of 2, sn, (K,  H )  behaves as 

C sn,( K, h )  - ( K  - K c ) ( 2 - Y ~ ) / Y ~  K >  K , .  

As we will see later y ,  > yh and thus we finally obtain that 

p (  K ,  h = 0) - ( K  - K,)(* -”H) ’~I  K > K, .  

S 

(9) 
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If one also defines 6, a correlation length?, which for h = O  behaves as 

6 ( K  0) - IK - K c I - ”  (10) 

P ( K >  K , , 0 ) - t ( K , 0 ) y H - 2 .  (11) 

with v = l/y,, (9) and (10) give 

If one remembers that the relation between the density p of a fractal and a typical 
length scale L defines the fractal dimension d as (Mandelbrot 1982, Pietronero and 
Tosatti 1986) 

L Z - D  
P -  

(where D is the dimension of the Euclidean space in which the fractal is embedded), 
then we can interpret yH as the fractal dimension of the t3c, from (9), (1 1) and (12). 

To summarise, if one calculates ,y,( K,, 0, L) in systems of different size L, one can 
obtain from (6) d = y, of the r3c. 

As in the case of ordinary percolation (Vanderzande 1988) we are also interested 
in the surface fractal dimensions, ds of the r3c. This dimension can be found if one 
considers a semi-infinite system. The fractal dimension of the sites in the I ~ C  and on 
the surface is then called the surface fractal dimension d, . Once more this d, is related 
to a critical exponent yX which describes the percolative properties of Ising clusters 
in a semi-infinite geometry. As in the case of ordinary percolation (De’Bell 1980), we 
can now define cluster numbers nr,so( K,  h )  which give the average numbers of clusters 
(per site) containing s sites, so of which are at the surface. From this one can define 
a free energy 

f(K, h, H, Hs) = c ns , s , (K  h )  exp(-sH - SOH,) 
s, so 

(H, is a surface ghost field) and a surface percolative susceptibility ,yp,s 

In the surface geometry, ( 5 )  is modified into 

f ( K ,  h, H, H,, L )  - b-*f(bylK,  bYhh, b y ~ H ,  bYHH,, b-’L) (15) 
which gives for x , , ~  at the Ising critical point 

xP,,( K,, 0, L) - L - 2 + y H + y H .  

The argument given earlier in this letter can now be extended to show ds=y;I 
(Vanderzande 1988). 

We have determined yH and yX in the following way. We perform Monte Carlo 
calculations of an Ising model of L x L sites at criticality. We take periodic boundary 
conditions in one direction and free boundary conditions in the other, thus creating 
a free surface. After equilibrium has been reached, we count for each spin configuration 
the cluster numbers ns,so using standard cluster counting techniques (Stauff er 1985). 

After averaging ns,so over a great number of spin configurations, the susceptibility 
,yp(K,, 0, L )  and surface susceptibility xp,,(KC, 0, L )  are calculated from (3) ,  respec- 
tively (14), and fitted to (6) and (16) to obtain yH and y;l. 

t Such a correlation length can e.g. be obtained from the percolative correlation function g( r ) ,  which gives 
the probability that a site a distance r from an occupied site is also occupied and belongs to the same cluster. 
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We performed calculations for systems with L = 4,6,8,  . . . ,24,26,30 and 36. For 
the largest system size, up to 1.25 x lo6 MC steps/spin were performed. Also for L S  26, 
two independent runs were made. Errors were estimated from fluctuations in subresults. 
Before discussing our results we would like to make a remark on the boundary 
conditions. It can be admitted that for the calculation of xP, periodic boundary 
conditions in two directions at first sight might have been a better choice. We believe, 
however, that for the large systems considered here boundary conditions are not too 
important in determining bulk properties. As the calculations are rather time consum- 
ing, we choose to determine in one calculation both bulk and surface susceptibility. 

Figure l ( a )  shows the quantity log xP plotted against log L. As can be seen, they 
lie on a straight line, whose slope gives y H  = 1.936(*0.009). The results on xp,s (figure 
1 ( b ) )  give 

(17) 

from which, using the above result on yH, we find y h  = 0.842(*0.008). 
Our result for d = y ,  is consistent with a previous, less accurate determination 

(Cambier and Nauenberg 1986) which gave d =  1.90(*0.06). Furthermore a result 
obtained by series enumerations (Sykes and Gaunt 1976) gave the exponent y =  
1.91(*0.01), which is related to yH by y = (-2+2yH)/y,. From this we obtain y, = 1.95. 
In order to obtain this result we had to use y, = 1 (Coniglio and Klein 1980, Stella and 
Vanderzande 1988). Our calculation has the advantage of giving a direct determination 
of y, alone. 

0.778( 10.007) 
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Figure 1. Logarithm of bulk percolative susceptibility xp ( a )  and surface percolative 
susceptibility xp,s ( b )  at the king model critical point, plotted against logarithm of system 
size L. The straight lines give least-squares fits. 
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Our results clearly contradict a conjecture (Suzuki 1983) according to which 

On the other hand our results are consistent with a recent result of the present 
authors (Stella and Vandenande 1988) according to which the critical Ising point is 
a tricritical point for correlated percolation. Then, by studying the q + 1 limit of the 
Potts lattice gas, and using results from conformal invariance (Stella and Vanderzande 
1988) it can be argued that the exponents describing the king cluster are those of the 
tricritical q + 1 Potts model (such a relation was first proposed by Temesviri and 
Herinyi (1984) on a more conjectural basis). In that case we would have y H  = = 
1.947 . . . (Nienhuis 1987), a value which is clearly supported by our results. 

Our determination of y h  = ds is the first we know of. Extending the result of Stella 
and Vandenande (1988) to the case of the surface fractal dimension, one concludes 
that y L  should be given by one of the surface magnetic exponents of the tricritical 
q = 1 Potts model. 

Unfortunately, within conformal invariance alone there is no definite a priori 
solution to the question of what these exponents should be. If one extends a result 
for the critical branch of the Potts model (Cardy 1984) to the tricritical branch one 
obtains (Vanderzande and Stella 1987) 

where U = (2/7r) cos-’fi/2, and for the tricritical branch of the Potts model one should 
take -1 s U s 0 (Wu 1982). 

For q = 2, the tricritical Ising model, one obtains in this way y h  = -f. This result 
is in agreement with an independent determination by Cardy (1986) and with numerical 
results (Balbso and Drugowich de Felicio 1987). 

For the case of interest here, q = 1, we obtain y h  = -$ This result is clearly in 
contradiction with our numerical data, but also with the interpretation of y h  as a 
surface fractal dimension, which of course should be positive. 

At a tricritical point we expect two magnetic surface exponents and thus a surface 
exponent like we find would not necessarily contradict the identification of the Ising 
clusters with the tricritical q = 1 Potts model. 

We can obtain with some plausible arguments a lower bound on y L .  From the 
physics of the problem and also from our result on d it is clear that the i3c is a more 
compact fractal than the incipient infinite cluster ( I’C) in the percolation problem 
(remember that in that case, d =%<%I .  One thus also expects that the surface fractal 
dimension of the i3c is bigger than that of the I’C, which equals 3 (Cardy 1984, 
Vanderzande 1988). Thus we obtain y;I 3 3, consistent with our numerical result. 

Using results from conformal invariance (see Cardy 1987 for a review) we can give 
a conjecture for y X .  The tricritical point of the q = 1 Potts model is described by a 
non-unitary conformal field theory with central charge c = 4. In that case possible 
surface exponents are determined from the Kac formula and are given by 1 - A , ,  where 

- y H = d = u -  8 - 1.875. 

y ; l = u  (18) 

(4p - 3 q ) 2  - 1 
48 AP.4 = 

with p and q arbitrary integers. Taking A3,3 we obtain y h  = 1 - A3,3 = 2 = 0.833 . . . , in 
good agreement with our result. Taking our conjectured values for y H  and y h  in (16) 
we obtain 

XP.*(KC, 0, L) - L75’96=0.781 
which is almost exactly the numerical result in (16). 
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Thus, if the critical Ising clusters are indeed described by a tricritical q = 1 Potts 
model, this model seems to have one relevant (g) and one irrelevant (-$) surface 
magnetic exponent. The numerical results of Balblo and Drugowich de Felicio (1987) 
who worked on the Blume-Cape1 model, which is thought to be in the same universality 
class as the tricritical Ising model, indicate, however, that for q = 2, there is no relevant 
surface magnetic exponent for the tricritical point in the Potts model. It may be that 
in this case, unitarity (Friedan et a1 1984) forbids some exponents to appear in the 
theory. This may be an interesting subject for further study. 

The numerical calculations presented above clearly support the idea that critical 
Ising clusters are described by tricritical q = 1 Potts model exponents. This equivalence 
allows us to determine one more fractal dimension of the Ising clusters, namely the 
dimension of the hull, dH (here H should not be confused with any of the magnetic 
fields introduced above). The hull of a cluster is defined as the set of nearest-neighbour 
sites of the cluster, for which a path to infinity exists which does not cross the cluster. 

The fractal dimension of the hull for arbitrary values of q in the q-state Potts model 
was calculated using Coulomb gas methods by Saleur and Duplantier (1987). In the 
case of the tricritical q = 1 Potts model their result can be seen to lead to 

(20) d -11 - H - 8 (-1.375). 

Numerical evidence that this is indeed the hull dimension of the r3c can be found in 
the work of Cambier and Nauenberg (1986). They calculate the numbers S(s, K ,  h), 
giving the average number of sites in the perimeter (the set of nearest-neighbour sites 
of a cluster) of clusters of s sites when the Ising model is at inverse temperature K 
and in a magnetic field h. At the d = 2 Ising critical point they find 

S(S, K , ,  0 )  -so (21) 
with U =0.68*0.04. On the other hand, the average size R, of a cluster of s sites (for 
large s) is determined by the fractal dimensions d and is given by 

(22) R, - , ' /a 

giving 

S(S, K, ,O) -R:d .  

The exponent crd in (23) can be interpreted as the fractal dimension dp of the perimeter. 
Using (T = 0.68* 0.04, and our result d = g, we get dp = ad = 1.32 * 0.08. Of course, 
the perimeter consists of both the hull and the inner perimeter (the set of sites on the 
perimeter which are linked to infinity by a path crossing the cluster). Now, if the 
fractal dimension of the inner perimeter is less than or equal to the hull dimension, 
which in the case of correlated percolation seems reasonable, the numerical work of 
Cambier and Nauenberg (1986) leads to 

(24) 
consistent with (20). Taking everything together, these results further confirm the 
relation between Ising clusters and tricritical q = 1 Potts model exponents. 

To conclude, we made accurate numerical calculations of the fractal dimensions 
d and d9 of the incipient infinite Ising cluster. Though some previous estimates of d 
existed we believe that our results are much more accurate. Our result for ds is, to 
our knowledge, completely new. The results for the exponents yH and y h  are consistent 
with the conjectures yH =%, y;I = d  and are supporting a recent result according to 

d H - -(j- - 1.32 * 0.08 
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which critical Ising clusters can be described by tricritical q = 1 Potts model exponents. 
The fractal dimension of the hull dH is then equal to y, a value consistent with the 
numerical work of Cambier and Nauenberg (1986). 

One of us (CV) would like to thank the IUAP-Belgium for financial support. 
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